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FOREWORD

An idea that has been considered to provide control to some advanced guided projectile
concepts is to deflect the rear part of the tail surface as opposed to the entire tail surface. This
concept offers an advantage over deflecting the entire tail surface in terms of control volume,
weight and cost. However, to estimate the aerodynamics of these types of aerodynamic concepts
with the aeroprediction code requires hand calculations and engineering judgment over much of
the range of flight conditions of interest. As a result, new technology has been developed to be
integrated into the next version of the aeroprediction code which will allow aerodynamics of
trailing edge flaps to be computed in an automated and more accurate manner than currently
available approximate methods. This report documents this new aerodynamic prediction
methodology for trailing edge flaps.
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1.0 INTRODUCTION

Conventional approaches to control weapons include acrodynamic controls where either
the canards, wings, or tails are deflected a given amount to provide the required maneuverability
to intercept a target. More recently, as weapons have attempted to hit targets flying at high
altitudes where the atmosphere is quite thin, side jet thrusters are being considered to replace or
compliment aerodynamic controls. These side jet thrusters can also be effective in cases where
very short airframe time constants (the time it takes for a control system to generate about 63
percent of the required maneuverability) are required. For both the conventional aerodynamic or
propulsive means of control, cost and control hardware weight and volume become prohibitive
for some applications. These lower cost applications tend to be associated with stationary or
slowly moving targets where maneuverability requirements are low, but improvements in
accuracy over a ballistic weapon are necessary.

One idea that has been considered to meet the lower cost, lower maneuverability control
concept is to deflect a part of a wing or tail surface as opposed to the entire surface. The portion
of the tail surface considered for deflection is at the tail or wing trailing edge. Figure 11s an
illustration of a typical concept being considered where a part of the trailing edge portion of the
tail fin is being considered for the control surface as opposed to the entire tail surface. As seen in
Figure 1, this trailing edge flap concept is associated with a very low drag projectile design, and
given a high initial velocity, can produce a fairly long range, even without a rocket motor. For
long ranges, winds and other ballistic errors can produce sizeable miss distances without some
sort of corrective device. While the large tail fins of the Figure 1 concept are needed for stability
at a high velocity launch, deflecting the entire tail fin a significant amount to eliminate the
ballistic errors is not needed. Only a fraction of the tail surface is required to provide adequate
maneuverability if the deflection occurs over a sustained period of time. The small deflected
surface area results in a much lower volume, weight and cost for the control system. As seen in
Figure 1, the amount of area of the trailing edge can vary depending on the requirements. Shown
in the figure is a variable semispan, root chord and hinge line for the trailing edge flap.

The most recent version of the NSWC aeroprediction code (AP98)l distributed to users is
not capable of computing aerodynamics on a concept such as that shown in Figure 1 when the
trailing edge flaps are deflected. The objective of this report is to develop the methodology to
allow the next version of the aeroprediction code (AP02) to compute aerodynamics on a
configuration where some portion of the rear part of the aft lifting surface (either wing or tail)
can be deflected to provide control. In developing this trailing edge flap acrodynamic predictive
methodology, considerations of the cost to integrate the new methodology into the aeroprediction
code (APC) will be a prime driver in the method chosen.
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In reviewing the literature to determine approaches to use for calculating the
aerodynamics of trailing edge flaps, the general approach that comes closest to that desired for
use in the future APO2 is that adopted for the Missile Datcom. 2 In that approach, an equivalent
value of deflection for the entire wing or tail surface is determined to reflect a given flap
deflection. In other words

Sw =1 () (1)

The equivalent value of Ow is determmed offline using methods in the airplane DATCOM® at
subsonic speeds and the method of Goin* at supersomc speeds. The advantage of an approach
such as Equation (1) for codes such as Missile Datcom? or AP98! is that this is the least costly
and most straightforward approach to incorporate the computation of aerodynamics of trallm0
edge flaps into an existing computer code. The low cost is because codes such as AP98' or
Missile Datcom® are generally already set up logic wise to compute the aerodynamics of a
configuration where one set of fins are deflected. Hence if one can define what that wing
deflection is in terms of 'some flap deflection, the codes'? can be exercised to provide a set of
aerodynamics that simulate a configuration with a trailing edge flap deflected by a given amount.

While the approach used by the Missile Datcom [Equation (1)] to compute aerodynamics
of trailing edge flaps is the same approach that will be adopted for use here the methods that will
be used for the AP02 will differ from those™ used in the Missile Datcom.” There are several
reasons for this. First of all, the method of Goin® has too many limitations. Some of these
limitations include requirements for supersonic leading and trailing edges of the flap hinge line,
viscous effects are not accounted for, and the method does not include nonlinearities due to large
flap deflections or angles of attack (AOAs). Secondly, while the method of Reference 3 takes
into account some of the viscous and nonlinear effects that Reference 4 does not account for, the
method itself is inconsistent with that of Reference 4.

The objective here is thus to derive an improved method to compute aerodynamics of
trailing edge flaps that utilize the Equation (1) approach. The method should be similar for both
subsonic and supersonic freestream Mach numbers, should not be limited to supersonic leading
and trailing edges, should account (at least empirically) for viscous effects, and should account
for nonlinearities associated with large flap deflections or AOAs. From a practical standpoint,
the weapons that will use the trailing edge flaps for control will typically fly at fairly small trim
AOAs (less than 10 deg). However, flap deflections as large as +30 deg are not unreasonable in
order to achieve the appropriate trim AOA desired. Also, from a practical standpoint, most
applications will be below M.. = 2.0. However, the method should be general enough to be
applied over the Mach number range of applicability of the AP98 or AP02, which is 0 to 20. On
the other hand, the method will not be validated over this large Mach number range due to
limited experimental data.



NSWCDD/TR-01/30

2.0 ANALYSIS

To most efficiently implement the methodology for computing the aerodynamics of a
weapon concept that is controlled by trailing edge flaps, we will seek the definition of the
equivalent wing deflection that yields the same normal force, pitching moment and trim AOA as
that obtained by deflecting the trailing edge flaps. In mathematical terms,

Nw@)+ Npw) =N fj ()
My ) + Mpw) =N¢f, [(XCP )f "Xref] (3)
(aTR )w = ((xTR )f “4)

In reality, if Equations (2) and (3) are satisfied, Equation (4) will automatically be satisfied. We
thus must define the relationships that allow Equations (2) and (3) to be satisfied.

Notice that in Equations (2) and (3), the wing-body normal force and pitching moments
are equated to the normal force and pitching moment coefficients of the flap alone (with no
interference effects present) times an empirical constant. There are a couple of reasons for this.
First, when the entire wing is deflected it will have carryover normal force onto the wing. This
means the equivalent control deflection of the entire wing will be lower than if no carryover
normal force were present. Secondly, while there will be some interference carryover normal
force onto the flap from the wing or body, this extra normal force can be lumped into an
empirical term, f;, which will be defined later.

Equation (2) can be expanded as

[CNW(B) +CNB(W)]5W Q Aref = [CN]Sf f1 Q Aref
&)

or

(CNa )w [kW(B) +kB(W)]8W = (CNa )f f) &

The empirical factor, f;, of Equation (5) accounts for several physical phenomena. These include
boundary layer buildup and separation of the flow ahead of the flap on the wing surface; flap
thickness effects; effects of the slot created between the wing and flap when the flap is deflected;
and interference effects of the flap onto the body or wing, or the wing or body onto the flap. The
factor f; will be determined empirically based on experimental data for wings which have trailing
edge flaps. Figure 2 attempts to pictorially and mathematically show the representation of a
trailing edge flap deflection by deflecting the full wing.

To determine f;, we equate the right hand side of Equation (5) to the change in normal
force coefficient at some AOA due to a control deflection & That is
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Physical Representation

Reality ' Approximation
Body-Tail With T.E. Flap Body-Tail
o /[ o /]
Voo ’(v Voo ’(v
Tail With T.E. Flap Tail With No Flap
O; \' 6T\
———X— —q
A /
Mathematical Representation
(CNa )f fl Sf = 6-1- (CNa )T (kT(B) +kB(T))

Normal force coefficient
of flap deflected an amount 8¢

Normal force coefficient of ]

tail deflected on amount &

Physics f; Accounts for

e Boundary layer buildup and separation
ahead of flap

e Slot between wing and flap

o Interference effects of wing/body on flap
and vice versa due to flap deflection

Viscous effects completely different
(boundary layer, no separation bubble)

No slot present

Interference effects automatically included

FIGURE 2. PHYSICAL AND MATHEMATICAL REPRESENTATION OF TRAILING EDGE FLAP
DEFLECTION BY FULL WING DEFLECTION
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£ = (ACNf) (6)
l (CNa )f d¢ 1,

ACy, of Equation (6) is the additional normal force coefficient created by a flap deflection 0.
(CNa )f is the theoretical normal force coefficient slope for the flap of given aspect ratio and

taper ratio at a given Mach number and AOA. This theoretical value is determined by the
methods in the APO2 for a flap only (no wing ahead of it). The AP02 methods include linearized
theories at low AOA or control deflection combined with empirical approaches at higher AOA.
These methods in the AP98 or APO2 are fairly general and can calculate aerodynamics on
supersonic or subsonic leading edge wings or flaps at low AOA. Also, aerodynamics can be
computed for Mach numbers 0 to 20 and AOAs to 90 deg. Hence, the theoretical methodolog

for computing (C Ng )f is fairly general. The value of (CNu )f is actually computed using a
secant slope for a given AOA. This value of (CN(, )f is then multiplied by the given flap

deflection, 8¢ as seen in Equation (6). The numerator of Equation (6) is based on experimental
data, which accounts for various physical phenomena of a flap in conjunction with a wing, which
a wing alone does not have. Hence, the empirical factor f) is generated by the ratio of
experimental data for a flap on a wing to a theoretical wing alone solution.

The factor f> in the denominator of Equation (6) is used to account for the fact that the
theory in the APO2 which defines the lift curve slope of an entire wing deflected an amount & at a
given AOA may not accurately predict the increment in normal force generated by a flap. The
factor f, is expected to be near one at supersonic speeds. However, at subsonic speeds, wind
tunnel data suggests the theoretical predictions of additional normal force generated by a flap are
higher than what the theory suggests. This inaccuracy of the theory arises from using the secant
slope for (CN(1 )f versus using the local slope at a given value of «. At supersonic speeds, use of

the secant slope does not appear to be a problem. However, subsonically, the Cy versus o curve
levels out at around 25 to 30 deg AOA, so an additional increase in ¢ brings increasingly less
increase in Cy. Using a secant slope for (CNa )f versus the local tangent gives a value of (CNa )f

which is too large and therefore a value of f; which is too low. The parameter f, therefore
corrects for this weakness. One could change the overall APO2 code to use local versus secant
slopes. However, this would be a very costly and time consuming process, and it was much
more cost effective to define the factor f, to take care of this correction.

In Equation (6), it is assumed both the numerator and denominator are based on the same
reference area Aps. If (C Ng )f is calculated based on a wing alone solution for the flap, then the

Equation (6) must be multiplied by Arr/A¢ to have consistent reference areas.

To define the empirical factor fj, two data bases will be used.>® Reference 5 contains
data for a canard-body-tail configuration (see Figure 3) with trailing edge flaps. Data is available
for Mach numbers 1.5 to 4.63, AOAs -2 to about 30 deg (except for M. = 1.5 where some data
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is available only to about 15 deg AOA), and control deflections 0 to -30 deg. Unfortunately, no
positive values of 8 were available in Reference 5, probably since a negative value of 9 is
required for trim to occur when ¢ is positive.

Reference 6 contains data for low Mach numbers (M., = 0.3 to 0.5) for several different
configurations. These configurations included an elliptical and circular cylinder-shaped bodies
with either a delta or sweptback rectangular wing. The wings could have either a leading or
trailing edge flap. The configuration of most interest here is the delta wing with trailing edge
flaps on a circular cylinder body (see Figure 4). Data is available to 40 deg AOA for flap
deflections of +10 and +30 deg. Hence, Reference 6 will complement the supersonic data of
Reference 5.

For Mach numbers in between M., = 0.4 and M.. = 1.5, the following procedure will
apply for computing f;. For Mach numbers below M.. = 0.8, the value of f; computed at
M.. = 0.4 will be assumed to apply. For Mach numbers between M. = 1.5 and 0.8, linear
interpolation will be used to compute f; based on the values of f; at M. = 1.5 and 0.8.

Figures 5 and 6 give the values of f; determined by using References 5 and 6 to find
values of (ACy )f and Reference 1 to compute a value of (CNa )f at a given AOA. Figure 5is

when o and & are of opposite signs, which is the practical case for trim when the aft located
control surface is deflected. Figure 5 applies for M. > 1.5 and for values of o and 0 of the same
sign when ¢ is numerically small. No data has been found to ascertain the validity of Figure 5
when « and & are the same sign and « is greater than a small value. For M., > 4.63, the value of
f, at M.. = 4.63 will be assumed. Also Figure 5 holds for values of 8¢ up to -30 deg, based on the
Reference 5 data.

Figure 6 gives values of f; for M.. = 0.4 for values of & up to 30 deg and for values of 8¢
of +30 deg. Figure 6 values of f; utilize the values of f> from Figure 7. Figure 7A presents the
most practical case for tail-located trailing edge flaps since ¢ and &; must be of opposite signs for
trim to occur. Figures 7B and 7C present results for f, when o and Os are of the same sign.
Figure 7B is for 8¢ = 10 deg and Figure 7C is for 8¢ =30 deg. Linear interpolation of the
Figures 7B and 7C will occur for values of ¢ other than 10 or 30 deg.

Knowing f, from Figures 5 or 6, Equation (5) can be rewritten as

S No )f L } 8, 0
))

O, =
v [E\Ia)w (kW(B)+kB(W

The way Equation (7) is utilized within the AP02 is as follows:

1. For a given flap size, (CNa )f is computed from the wing alone solution in the AP02

at a given M., o, AR and A. This value of (CNu )f is then related to Arer versus Ag.
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FIGURE 5. VALUE OF PARAMETER f; AT SUPERSONIC SPEEDS
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FIGURE 6. VALUE OF PARAMETER f; AT SUBSONIC SPEEDS
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FIGURE 7C. FACTOR WHICH CORRECTS FOR USE OF SECANT VERSUS TANGENT IN NORMAL
FORCE CURVE SLOPE (8;= 30 DEG)

2. f; is then computed via table lookup for a given value of &, M. and O¢ (if the flow is
subsonic. '

3. For a given wing size, (CNu )w is computed from the wing alone solution in the AP02

at a given M., &, AR and A. This value of (CNu )W must again be based on Arr.

4. Values of kws, and kg(w) are then computed at a given & using the nonlinear control
methodology in the AP02. This methodology uses slender body theory as a basis for
low AOA estimates and wind tunnel data at high AOA to modify these estimates.

5. For a given value of 8¢, an effective value of dw is then computed based on
Equation (7). This value of 8w is the amount the entire wing is deflected to
approximate the additional normal force of 2 wing due to a trailing edge flap
deflection of an amount O¢.

Equation (7) defines the equivalent fin deflection to give the same normal force that
deflecting the rear part of the fin an amount &¢ would give. The normal force coefficient of the
flap or fin is computed from Equation (6). Thatis

(ACN)f =1, (CN<1 )f O ®

The question that we must now address is the pitching moment for the flap. By deflecting the
entire wing an amount ¢ defined by Equation (8), the pitching moment for the wing will be
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based on the center of pressure of the entire wing, not that due to the flap. Thus to obtain the
correct pitching moment for the flap, where the entire wing is deflected, a change in the center of
pressure must be calculated.

Most trailing edge flaps under consideration have a fairly high aspect ratio with a fairly
small root chord. The initial thought by the author was to assume the center of pressure of the
normal force generated by the trailing edge flap would be similar to that on a high aspect ratio
wing alone. That is for subsonic flow, the center of pressure would be around the quarter chord
location and then transition to the half chord location around M.. = 2.0. However, in comparing
this assumed location to the experimental data of References 5 and 6, it was clear this
assumption on center of pressure location was not correct. It is believed the reason for the center
of pressure assumption not being correct is that the flap cannot be treated as a wing in isolation at
most Mach numbers. At a Mach number of 1.5, the assumption of % chord transitioning to V2
chord supersonically was a good assumption (see Figure 8). However, at other Mach numbers,
assuming the center of pressure of the flap normal force could be treated similar to a high aspect
ratio wing in isolation became increasingly erroneous as seen by the experimental data of
Figure 8. In giving the behavior of the experimental data in Figure 8 some thought, the author
believes that the physics of the flow can explain the Figure 8 experimental data. That is, as
Mach number increases and the trailing edge flap is deflected, a shock is created ahead of the
Jeading edge of the flap. This shock in turn creates a high pressure region on the wing where the
flap is attached. This high pressure region is the reason for the experimental center of pressure
of the flap normal force actually lying ahead of the leading edge of the flap as seen by Figure 8.
The dashed line in Figure 8 is the new assumed center of pressure of the flap normal force as a

function of Mach number. Notice that in Figure 8, [(X cP )f /Cr]avg represents the average center

of pressure over the AOA range from 0 to 30 deg as a fraction of the root chord of the flap.

At a subsonic Mach number of 0.4, the center of pressure also lies ahead of the flap. If
the flap deflection has the same sign as the AOA, this center of pressure location is about 0.7
chord lengths ahead of the flap leading edge. If the flap deflection is of opposite sign to the
AOA, the center of pressure is about 0.4 chord lengths ahead of the flap leading edge. For Mach
numbers 0 to 0.8, it is assumed these values of 0.4 and 0.7 chord lengths hold constant. For
Mach numbers 0.8 to 1.5, it is assumed the location of the flap center of pressure varies linearly
between the values at M..= 0.8 and 1.5.

The physics which cause the center of pressure to move ahead of the flap are believed to
be different for the subsonic and supersonic cases. Supersonically, it is believed viscous effects
as well as the shock structure are the dominant features. However, subsonically, it is believed
the flap deflection rearranges the pressure distribution on the wing ahead of the flap as well as
the viscous effects, which are present at all Mach numbers. The rearrangement of the pressure
distribution on the wing ahead of the flap occurs because in subsonic flow, disturbances in the
flow can feed forward, whereas supersonically they cannot, except through the boundary layer.
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FIGURE 8. FLAP ALONE AND TRAILING EDGE FLAP ATTACHED TO WING AVERAGE CENTER OF
PRESSURE OVER ANGLE OF ATTACK RANGE OF 0 TO 30 DEG FOR VARIOUS MACH NUMBERS

From a practical standpoint, the effect of the flap center of pressure shift diminishes its
effectiveness somewhat in generating trim AOA. This is because the center of pressure of the
normal force actually lies in front of the flap at most Mach numbers, decreasing the moment
somewhat and hence the trim AOA. On the other hand, if the flap is located near the base of a
fairly long body, a one to four inch shift in the center of pressure forward can be fairly small in
terms of the overall moment arm. The amount of normal force created does not seem to be
affected by the forward shift in center of pressure for trailing edge flaps.

The center of pressure of the trailing edge flap is therefore

(XCP)f (XLE)W +Crw ”‘-Crf f3 —-Xref
le ¢ ©)

ref ref

The term f; of Equation (9) is based on the empirically defined dotted lines of Figure 8. That is

£, =+1.5 for M, = 0.8 and (%, 9) opposite signs
=+1.8forM_ <£0.8and (a, 8) same signs -
f, =2.53-1.29 M,, for 0.8 <M, <1.5and (o, 8) opposite signs
=3.17-1.71 M, for 0.8 <M_, <1.5 and (o, §) same signs 4o
f, =-0.84+0.96 M, for1.5<M, <2.7
=1.75 for M, >2.7

Using Equations (9) and (10), the change in pitching moment created by the fact the wing is
deflected to simulate the trailing edge flap deflection is then
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ACy,

(ACy )f =77 {[(XCP)f - Xep Jw ]'*’[(ch)w “XCG]} (11

ref

Equation (11) represents the pitching moment coefficient of any configuration where the trailing
edge flap deflection is approximated by deflecting the full wing. The first term of Equation (11)
represents the difference in the center of pressure between the flap and wing whereas the second
term represents the center of pressure of the wing normal force term relative to a reference
location which is here taken to be the center of gravity of the vehicle. Of course, the center of
pressure of the wing is computed in the APO2 using linear theory methods at low AOA and
transitions to the centroid of the wing planform area at high AOA.

The major focus in the analysis for estimating the aerodynamics of trailing edge flaps has
been to determine an equivalent tail deflection which will give normal force and pitching
moments equal to those when the flap is deflected. No mention of axial force has been made to
this point in time. The axial force coefficient will be different for an equivalent wing deflection
based on a flap deflection &;. The flap deflection will generate an additional axial force term due
to the fact 8¢ will be generally much larger than Sw. An approximate relation which can be used
to calculate the increment in axial force coefficient that results from estimating the aerodynamics
based on a wing deflection of 8w versus a flap deflection of d¢ is

(AC,), =A(Cy); sinf5,| —sinf3y|] (12)

ACy, of Equation (12) is the additional normal force contribution due to the flap. Sin |0¢| takes

the component of this normal force term in the axial direction. Sin |dw| subtracts off the
component of axial force of the wing since this is automatically included in the APO2
calculations; to leave this term in the calculations would mean we would double account for the
wing deflection axial force contribution.

3.0 RESULTS AND DISCUSSION

Equations (8) and (11) define the theoretical change in normal force and pitching moment
coefficients due to a flap deflection. The value of ACy, computed by the theory is that value

defined by
ACy, = (Cx )5w=0 -(Cy )5W¢0 (13a)
The value of 8w in Equation (13a) is obtained from Equation (7) using the process defined earlier

in the analysis section of this report. Using the values of dw from Equation (7) in the AP9S,
values of (Cy )5W=0 and (Cy )5w=0 of Equation (13a) can be computed and then ACy, defined
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theoretically. This value of ACy_ can then be compared to experimental data where ACy is

obtained using experimental data for (CN )6f=o and (CN )szo . Thatis
ACNf = (CN )5f=0 "(CN )5f¢0 (13b)
Likewise, experimentally measured values of ACy,. can be defined as
ACMf = (CM )sfzo _(CM )5&0 (14)

and compared to theoretical values computed from Equation (11). ACy, of Equation (11)
comes from the theoretical values defined by Equation (13a). Thus comparison of ACy, values

obtained by Equation (13a) to (12) and ACy, values obtained from Equation (11) to
Equation (14) will allow us to determine the validity and accuracy of the new theory.

The first set of data we will consider is from Reference 5. The configuration tested in the
wind tunnel is shown in Figure 3. Figures 9-14 compare theory and experiment for (ACN )f and

(ACM )f at 8¢ = -20 deg and Mach numbers 1.5, 1.9, 2.3, 2.96, 3.95, and 4.63. Results are
plotted as a function of AOA up to 30 deg. For Mach numbers 1.5 and 1.9, experimental data
was not available up to 30 deg AOA, so data was shown where available. As seen in the figures,
the theory does a reasonable job in matching the data for both ACy, and AC , except at

M.. = 4.63 and o > 20 deg. At these conditions the theory overpredicts the normal force and
pitching moment increments somewhat. However, since this region is beyond the anticipated
practical range of usage (M. < 2.0, & <20, |6¢| < 30 deg), no effort will be made to try to
improve upon the theory at this condition.

Also shown on the (ACy )f portion of Figures 9-14 are the results of assuming the center
of pressure of the flap is based on the flap in freestream flow and with the flap attached to the
trailing edge. The flap attached to the trailing edge computations take into account the center of
pressure shift shown in Figure 8. Note that at M. = 1.5, no shift is shown so the Figure 9
pitching moment results show no change between the flap alone and the flap attached. However,
Figures 10-14 show a change in pitching moment between flap alone and the flap attached. As
seen in Figures 10-14, using the Figure 8 results tend to show an improvement in pitching
moment calculations over assuming the flap alone.

It is also worthwhile to reemphasize the fact that all the theoretical calculations shown in
Figures 9-14 (as well as the figures which will follow) were computed by using the AP02 in
conjunction with Equation (7) as described in the Analysis Section of the report.
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FIGURE 9. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M.. = 1.5, 8;= -20 DEG)
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FIGURE 10. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M. = 1.9, 8;= -20 DEG)
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FIGURE 11. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M. = 2.3, 8;= -20 DEG)
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FIGURE 12. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M. =2.96, &;= -20 DEG)
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FIGURE 13. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M. = 3.95, 6;= -20 DEG)
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FIGURE 14. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M. = 4.63, 8;= -20 DEG)

Figures 15-20 compare theory and experiment for (ACy )f and (ACy, ), as a function of

flap deflection at AOA 10 deg and for the Mach numbers of the Reference 5 data base.

Figures 15-20 are believed to be a more realistic representation of the practical case where trim is
expected to occur for & < 10 deg with the flap deflected as high as -30 deg. Asseen in

Figures 15-20, the theory and experiment are in fairly good agreement. All pitching moment
data in Figures 15-20 assume the Figure 8 center of pressure shift. Note also that the theory

shows a linear variation of (AC )f and (ACy,); for M. > 1.5 and d¢to —30 deg for the small
AOA of 10 deg.

Reference 6 represents the only subsonic data base the author found in the literature. The
configuration tested is shown in Figure 4. The ogive of the Figure 4 configuration can be either
an elliptical or a circular cylinder tangent ogive. The case upon which the change in pitching
moments and normal force coefficients were determined was based on an elliptical nose.
However, since the data used was A(CN )f and A(CM )f , it is expected the body shape will have
little impact since the same body shape is used for the 8¢ = 0 case as well as the O¢ # 0 case.
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FIGURE 15. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M..= 1.5, & = 10 DEG)

23




NSWCDD/TR-01/30

d; (deg)

10 -20 -30
0 T T T
P ©
<
O
<]
~ ©
- 05 P
|
@ Exp
—— Theory
-1.0

20 F —
O Exp’
| —— Theory

0]

(ACM)f

40 5 (deg) 20 -30

FIGURE 16. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M.. = 1.9, & = 10 DEG)
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FIGURE 17. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M..= 2.3, & = 10 DEG)
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FIGURE 18. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M.. = 2.96, a = 10 DEG)
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FIGURE 19. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M.. = 3.95, « = 10 DEG)
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Reference 6 has both positive and negative values of &¢ available. Unfortunately, M. = 0.4 was
the highest freestream Mach number considered, and AOA to 30 deg were also included in the
test series.

Figure 21 compares the theory and experiment for A(Cy )f and A(Cy )f where 05 is
negative for o to 30 deg. Note excellent agreement for A(Cy )f is obtained between theory and

experiment for both 8¢ = - 10 deg and -30 deg cases. Good agreement between theory and
experiment is obtained for A(CM )f for the 8¢ = - 10 deg case up to & of about 20 to 25 deg,

where the theory and experiment start to depart. For &¢= -30 deg, comparison of theory and
experiment for A(Cy )f is quite acceptable for o up to 20 deg. The trim AOA occurs at about

6 deg for 8¢ = - 10 deg and at about 14.8 deg for &;=-30 deg. In other words, good accuracy in
both A(Cy )f and A(Cy, )f can be obtained up to and slightly beyond the trim AOA, which is

most critical. For o above the trim value, accuracy of AlCy )f and A(CM )f is not as important,
and thus no attempt was made to try to improve the theory for these conditions.

Figure 22 gives the complimentary results to the Figure 21 case except here O is positive.
While trim cannot occur due to the fact o and &; are of the same sign and the configuration is tail
controlled, it is still of interest to see how well the theory compares to data for conditions where
trim is not possible. As seen in Figure 22, agreement between theory and experiment for both
(ACy )f and A(Cy, )f is quite good up to an o of about 15 deg. Above « of 15 deg, both

AlC and A(C deviate from experiment at most conditions. Again, since this is not a

M /¢ Nt p g
practical set of conditions for trim, no effect has been made to improve A(CN )f and A(CM )f for
o above 15 deg and & is positive.

Figure 23 compares the theory and experiment for axial force coefficient where the
trailing edge flap has been deflected -10 deg and -30 deg respectively. The equivalent value of
dw corresponding to 8; = - 10 deg and - 30 deg respectively is shown at the top of Figure 23 as a
function of freestream mach number. Note that dw is only a small fraction of &;. The wing area
is 8.67 times that of the trailing edge flap. At the bottom of Figure 23 is the axial force
coefficient based on the AP02 calculations plus the value defined by Equation (12). Two cases
are shown for the theory: where the wind tunnel model has a boundary layer trip and where no
boundary layer trip is present. The Reynolds number for the tests was 2.5 x 10%. According to
Reference 5, a boundary layer trip was present. Based on comparison of theory and experiment,
it appears the boundary layer trip was effective in producing a turbulent boundary layer over the
surface at the lower supersonic Mach numbers. However, at the higher supersonic Mach
numbers, it appears that the flow partially transitions back to laminar over much of the body and
large wing for the 8 = -10 deg case. This relaminarization of the flow is speculated to be the
reason the theory with no boundary layer trip option agrees closer to the wind tunnel data at high
supersonic Mach number than does the theory which assumes turbulent flow over the entire
surface of the model at all Mach numbers. If the above hypothesis of relaminarization of the
flow is correct, the theory predicts the experimental data quite nicely. If this hypothesis is not
correct, then the theory is high for Mach numbers 3.0 and greater.
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FIGURE 21. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M. = 0.4, 8; NEGATIVE)
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FIGURE 22. COMPARISON OF THEORY AND EXPERIMENT FOR NORMAL FORCE AND PITCHING
MOMENT COEFFICIENTS OF TRAILING EDGE FLAPS (M. = 0.4, 8; POSITIVE)
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FIGURE 23. COMPARISON OF THEORY AND EXPERIMENT FOR AXIAL FORCE COEFFICIENT
AT VARIOUS VALUES OF FLAP DEFLECTION AND AS REPRESENTED BY AN EQUIVALENT
DEFLECTION OF ENTIRE WING AT & = 0 DEG (Ry/ft = 2.5 x 10°

The Reference 6 data base also contained axial force data. Unfortunately, the base drag
term was subtracted out, only one fin was deflected and the numbers for no fin deflection were
small and irregular. As a result, it was believed an accurate value of experimental data for the
axial force would be difficult to obtain and therefore no comparisons of axial force coefficient

will be shown at subsonic Mach numbers.

4.0 SUMMARY

An improved semiempirical method has been developed to estimate the static
aerodynamics generated by a trailing edge flap. The method is based on deflecting the full wing
or tail surface an amount that allows the normal force coefficient to be equal to that generated by
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the flap deflected. A transfer in pitching moments is derived to account for the difference in
pitching moment when a full wing versus a trailing edge flap is deflected. Also, an approximate
relationship is given which accounts for the additional axial force coefficient not accounted for
based on a full wing deflected a small amount versus a trailing edge flap a larger amount.

In comparing the new semiempirical method to experimental data, the following
observations were made.

1. Normal force coefficient predictions at supersonic speeds were very good except at
the highest Mach numbers (M.. = 4.63) and AOA (& > 25 deg) where the predictions
were only fair.

2. Pitching moment coefficient predictions at supersonic speeds were fair to good at all
conditions considered (1.5 < M. < 4.63, 0 < o < 30, -30 < & < 0). The worst case
agreement was again for M.. = 4.63 and & > 20 deg.

3. Axial force coefficient predictions for supersonic conditions were found to be
reasonable. However, the accuracy was seen to be dependent on whether the
boundary layer on the wind tunnel model remained turbulent at M.. > 2.3 versus
returning to laminar flow over the model.

4. At subsonic flow, the only data available to the author was at M.. = 0.4. For this
Mach number, it was found the predictions for both normal force and pitching
moment coefficients were acceptable up to and slightly past the trim AOA. For larger
flap deflections, the accuracy of the predictions was acceptable at AOAs that
exceeded trim conditions by about 5 deg. However, since trim and slightly past trim
are of the most practical interest, this problem was not seen as a major limitation.

A linear interpolation of the empirical factors used in the derivation process was assumed
between Mach numbers of 0.8 and 1.5. Also values of these factors were assumed to be constant
below M.. = 0.4 and above M.. = 4.63, where no data was available.

Additional wind tunnel data is needed to refine and validate the new semiempirical
model. Specifically, data is needed when the AOA and flap deflection are of the same sign at
supersonic speeds. Data is needed for Mach numbers between 0.4 and 1.5 as well. However,
until additional data becomes available, the model derived here uses engineering judgment to fill
in these gaps and allows the model to be operational over the practical AOA, Mach number and
contro] deflection range that trailing edge flaps are contemplated for use.
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6.0 SYMBOLS AND DEFINITIONS

Angle of Attack

Aeroprediction Code

2002 and 1998 versions of the APC respectively

Aspect Ratio = bY/Aw

National Aeronautics and Space Administration/Langley Research Center
Naval Surface Warfare Center, Dahlgren Division

Reference area (maximum cross-sectional area of body, if a body is
present, or planform area of wing, if wing along)(ftz)

Planform area of wing in crossflow plane (ft%)
Wing span (not including body)(ft)
Axial force coefficient

Change in axial, normal and pitching moment coefficients respectively

due to a flap deflection &¢

Pitching moment coefficient (based on reference area and body diameter,
if body present, or mean aerodynamic chord, if wing alone)

Normal-force coefficient

Normal-force coefficient on body in presence of wing or tail
Normal-force coefficient slope of wing and tail respectively

Normal-force coefficient of wing alone
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Normal-force coefficient of wing or tail in presence of body

Normal-force coefficient derivative
Rood chord (ft)
Root chord of wing and flap respectively (ft)

Tip chord (ft)

Caliber(s) (one body diameter)
Body diameter (ft) at base
Reference body diameter (ft)
Degree(s)

Empirical factors used in defining the semiempirical model for flap
aerodynamics

Ratio of additional body normal-force coefficient due to presence of wing
or tail at a control deflection to that of wing or tail alone at & = 0 deg

Ratio of wing or tail normal-force coefficient in presence of body due to a
control deflection to that of wing or tail alone at & = 0 deg

Total length and nose length respectively (ft)
Reference length (ft)

Moment of wing in presence of body and body in presence of wing
respectively (ft — Ib)

Freestream Mach number

Normal force of wing in presence of body and body in presence of wing
respectively (Ib)

Normal force of trailing edge flap (Ib)
Pressure (Ib/ft%)

Dynamic pressure (lb/ftz)

35



T'LE, ITE
I'n

Rn

t

Ve

X1e, XcG

Xcp

chf

X,Y,Z

dw, Ot

NSWCDD/TR-01/30

Local body radius (ft)

Radius of leading and trailing edges of fin respectively (ft)
Nose radius (ft)

Reynolds number

Fin thickness (ft)

Freestream velocity (ft/sec)

Distance from nose tip to wing leading edge or center of gravity of body
respectively (ft)

Center of pressure (in feet or calibers from some reference point that can
be specified) in x direction

Reference location along x axis for moments (ft)

Axis system fixed with x along centerline of body

Angle of attack (deg)

Trim angle of attack (deg)

Leading edge sweepback angle of fin (deg)

Control deflection (deg) of trailing edge flap, positive leading edge up
Deflection of wing or tail surfaces (deg), positive leading edge up

Roll position of missile fins (P = 0 deg corresponds to fins in the plus (+)
orientation). ® =45 deg corresponds to fins rolled to the cross (%)

orientation

Taper ratio of a lifting surface = ¢/c;
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